Published: Monday, October 15, 2012

By Jim Bloch, Voice Reporter

Anti-nuclear activists like Brennain Lloyd of Northwatch and John Jackson of Great Lakes United, who spoke at St. Clair County Community College earlier this fall, oppose storing nuclear waste in deep geologic repositories like the one proposed by Ontario Power Generation a half-mile inland from Lake Huron near the Bruce Peninsula, 120 miles north-northeast of Port Huron.

They oppose reprocessing spent nuclear fuel rods. They are critical of current methods of storing high level nuclear waste in cooling pools and dry casks.

What do they propose to do with the more than 68,000 tons of spent fuel in the U.S. as of 2009, according to the Nuclear Regulatory Commission, which is growing by 2,000-2,400 tons per year?

The short answer is hardened on-site storage of used fuel rods.

Eternal danger

The problem with high level nuclear waste is that it remains dangerously radioactive for hundreds of thousands, sometimes millions of years.

“Spent nuclear fuel is about 95 percent uranium,” said a 2011 AP report. “About 1 percent are other heavy elements such as curium, americium and plutonium-239, best known as fuel for nuclear weapons. Each has an extremely long half-life” – the time it takes to lose half its radioactivity – “(and) some take hundreds of thousands of years to lose all of their radioactive potency. The rest, about 4 percent, is a cocktail of byproducts of fission that break down over much shorter time periods, such as cesium-137 and strontium-90, which break down completely in about 300 years.”

Cesium-137 and strontium-90 are two of the isotopes that blanketed the countryside around the Chernobyl reactor in the Ukraine, which melted down in 1986, creating a zone of exclusion the size of New Jersey for the next three centuries.

Over such a long period of time, even in deep geologic repositories like the one proposed for the Bruce peninsula, any number of occurrences could cause leakage into the environment and Great Lakes, critics say, from container failures to terrorism to earthquakes. Once the repositories are filled to capacity and sealed, monitoring and intervention to fix problems becomes nearly impossible. The Bruce site would accept low and medium level wastes from all over Ontario and critics don’t like the idea of a centralized waste storage site, which involves transportation of the dangerous waste by truck, rail and boat – all notoriously subject to accidents. Centralized sites offer potentially more lethal terrorist targets than decentralized sites.

Critics like Lloyd and Jackson oppose reprocessing used nuclear fuel due to the huge expense involved, the transportation dangers and the new streams of nuclear waste that are generated. Because reprocessing involves extracting plutonium, the key ingredient in nuclear bombs, they fear the proliferation of weapons.

Cooling pools and dry casks

Critics also oppose the current practices involved with storing used nuclear fuel bundles, which are highly radioactive, in deep cooling pools near the reactors. About 75 percent of high level nuclear fuel waste in the U.S. is stored in pools.

“The highly radioactive fuel bundles are taken out of the reactors by robots and placed into swimming pools for six to eight years,” said Jackson.

Because no permanent solution to nuclear waste has been developed, the pools are packed with more fuel rods than they were designed to store, making them especially dangerous in the event that the water system fails, as happened in Fukushima in the wake of the 2011 earthquake. According to a 2011 Time magazine story, in-ground pools are located in buildings next to operating reactors at 73 U.S. sites; attic pools, like the ones at Fukushima, are used at 31 plants. Each pool is a bomb waiting to happen. A 1997 Brookhaven National Laboratory study said a disaster at one spent fuel pool could result in 138,000 deaths and contaminate 2,000 square miles.

When the fuel rods are cool enough, at least five years later, some nuclear power stations are moving the used fuel into giant dry casks for temporary storage. The casks are dry in the sense that the spent fuel is surrounded by gas, often helium, instead of water.

Pools and casks, critics say, are susceptible to natural disaster, failures of the power grid and terrorism. The casks, while inherently stronger than the pools, most often sit on concrete pads in warehouses no stronger than a big box store, said Lloyd. They’re in a very vulnerable state.

Read story